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Previous contributions made by physical models to the understanding of cochlear 
mechanics suggested that a new cochlear model should be constructed. This paper 
illustrates the results obtained with a rectilinear, three-chamber model. The model 
was geometrically scaled 50: 1 and contained the constituent elements of the cochlear 
cross-section including the basilar membrane, Reissner’s membrane, the tectorial 
membrane and the organ of Corti. The basilar membrane was stretched crosswise in 
order to simulate real basilar membrane anisotropy. Two kinds (rigid and elastic) of 
tectorial membranes were used. The ductus and the sulcus were made visible and the 
model was also provided with displacement transducers to measure the axial and cross 
components of the oscillating fluid motion in the scala media. The adoption of a highly 
flexible membrane, simulating Reissner’s membrane, made it possible to vary the 
viscosity of the scala media compared to that of the other two scalae. The reasons 
why the simplifications of the previous models were partially rejected and the 
criteria adopted to assure dynamic similitude between the model and the real cochlea 
are described in the paper. The results of tests carried out to determine the partial 
distribution of the amplitude maximum, the phase velocity along the axis of the 
model and the dispersion curves are shown. The same tests were repeated with 
partially filled scala vestibuli. Lastly a typical nonlinear feature, that is a continuous 
flow in the scala media, is described. 

1. Introduction 
Experiments on physical models of the cochlea have gone some way to further our 

understanding of cochlear mechanics. It is more difficult to obtain results from 
physical than from mathematical or electrical models since the former require 
measurements of rather small displacements, particularly when the input signal level 
is low enough to maintain similarity with the real cochlea with respect to nonlinear 
phenomena. However, physical models do not require a great number of a priori 
simplifications and they permit us to analyse some peculiarities of the velocity field 
and its nonlinear aspects which cannot be detected by any other method. Physical 
models have thus drawn researchers’ attention to the appearance of eddies in the scala 
tympani and in the scala vestibuli (BBkBsy 1928), to possible hydrodynamic 
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distortions of the acoustic signal (Tonndorf 1970) and to a continuous motion of the 
fluid from the sulcus to the scala media (Helle 1974b). In  addition, the experimental 
results which Cannel (1969) and Helle (1974a) obtained with physical models have 
been used by Steele & Taber (1979a, b) to prove that the asymptotic method, named 
WKB, is applicable to fully three-dimensional fluid motion. 

Obviously, the main problem in the design of physical models is to find adequate 
criteria to assure dynamic similitude between the model and the real cochlea. 
Although other authors had previously constructed hydromechanical models in order 
to obtain qualitative confirmation of their views about cochlear functioning (Meyer 
1896; Ewald 1899,1903; both quoted in Tonndorf 1970), BBkBsy was the first (1928) 
to deal with this subject in depth. He conducted experimental measurements of many 
mechanical magnitudes of the real cochlea and tried to determine the necessary 
conditions for dynamic similitude through the method of dimensional analysis. Some 
empirical observations of cochlear motion and a set of experiments conducted on 
different models, one of which included the cochlear duct (scala media) (BBkBsy 1960, 
p. 423), led him to believe that reproduction of basilar membrane motion could be 
obtained with quite a simple model, like that shown in figure 1. The model consisted 
of just two rectilinear fluid ducts, coupled by means of an elastic partition with 
variable stiffness along the axis (the basilar membrane) ; these ducts communicated 
through a small passageway (helicotrema) placed at one end (cochlea apex) of the 
model. The remaining walls of the ducts, representing the scala vestibuli and scala 
tympani, were rigid except for two openings closed by elastic membranes. One of these 
received its oscillating motion from the outside, in this way simulating the coupling 
between the oval window and the stapes; the other membrane, clamped in bone and 
of negligible stiffness, made possible the motion of the incompressible fluid within 
both scalae, carrying out the function of the round window in the real cochlea. 
Subsequently, Tonndorf (1957, 1959), Cannel (1969), and Helle (1974a, b) with his 
K model, followed thia configuration. Helle also constructed two more complex 
models, simulating both the tectorial membrane and the organ of Corti. He observed 
an interesting nonlinear phenomenon in these : a continuous fluid motion whose cross 
component - coming out of the sulcus through the layer between the tectorial 
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FIQURE 2. Authors’ model. 

membrane and the Corti organ - was more sharply concentrated than the basilar 
membrane response. 

In the present paper, experimental results obtained with a rectilinear axis, 
three-chamber model (figure 2) are described. The model is geometrically scaled 50/1 
and contains the constituent elements of the cochlear cross-section, including the 
basilar membrane, Reissner’s membrane, the tectorial membrane and the organ of 
Corti. Various reasons induced us partially to reject BQkBsy ’s simplifications and 
adopt a more complex geometry than that used in previous models: 

(1) We were interested in the oscillatory and continuous fluid motions of the scala 
media, which are still rather unknown. To this purpose, the ductus and the sulcus 
were made visible and the model was also provided with displacement transducers 
which measured the axial and the cross components of the oscillating fluid motion 
in the scala media. 

(2) We thought that the inertia of the organ of Corti, of the tectorial membrane 
and of the fluid in motion between both organs was important if we were to obtain 
a realistic dynamical simulation of basilar membrane motion. BBkBsy’s dimensional 
analysis ignored the mass and the viscosity of the structures and of the liquid in the 
scala media. However, the mass of the basilar membrane and of the organ of Corti, 
or the mass of the whole scala media, is an essential element in the mathematical 
models, which, according to  Lighthill (1981), give a higher degree of agreement with 
the most recent data on the oscillating motion in the real cochlea (Rhode 1971). If 
the physical implications of BQkBsy’s similarity conditions are analysed, it can be 
concluded that they merely ensure the similarity of the motion in a section of the 
model adjacent to the cochlear windows and of length depending on the input signal 
frequency. BBkBsy’s conditions are probably not sufficient for an accurate repro- 
duction of the fluid motion in the area around the site of the maximum response 
of the basilar membrane. 

(3) Finally, the adoption of a highly flexible membrane to simulate Reissner’s 
membrane allowed us to vary the viscosity of the liquid in the scala media relative 
to the viscosity of the liquid in the scala tympani and in the scala vestibuli. 
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2. Similarity conditions 
2.1. Geometric and dynamic similitude in BCke‘sy’s model 

On the problem of the dynamic similitude between the model and the real cochlea, 
BBkBsy (1928) considered the perilymph viscosity and density, the basilar membrane 
compliance, the acoustic signal frequerlcy, and the characteristic length of the cochlea 
as the main physical magnitudes affecting the oscillating motion in the inner ear. 
Using these magnitudes, he formulated two independent and dimensionless parameters 
by the usual method of dimensional analysis. In our notation, the characteristic ratios 
adopted by BBkBsy were : 

wL2 pv2z 
’ L4 ’ 

- -  
V 

where w is the radian signal frequency, v and p the kinematic viscosity and density 
of the perilymph, L the characteristic length of the cochlea and Z the basilar 
membrane comp1iance.t 

If this set of physical magnitudes had been complete and the geometric similitude 
respected, the motion similitude would have been obtained by keeping in the model 
the values that these numbers have in the real cochlea. 

BBkBsy’s set of magnitudes did not include the mass of the basilar membrane or 
the organ of Corti, nor the endolymph viscosity, nor anything to represent the input 
signal amplitude, as for instance the longitudinal velocity u of the oval window. The 
omission of the input-signal amplitude may be justified as long as the cochlea behaves 
as a linear system; so, such an omission seems to be acceptable, since mechanical 
nonlinearities begin a t  signal amplitudes which are most likely beyond the physiological 
range of intensity (Steele 1979). It must, however, be observed that many aspects 
of the motion, highlighted and analysed by means of physical models, are typically 
nonlinear : (a)  formation of eddies (BBkBsy 1928) ; (b) appearance of components whose 
frequencies are not included in the input-signal spectrum (Tonndorf 1958) ; ( c )  
continuous motion of fluid; ( d )  changing with the motion of the time-averaged width 
of the gap between the organ of Corti and the tectorial membrane (Helle 1974). 
Therefore we can say that the models were certainly used out of the linear range. 

The omission of the mass and the viscosity of the cochlear duct is more questionable. 
Due to the supposed high viscosity in the endolymph,$ BQkBsy assumed that the 
phase and the volume displacement of Reissner’s membrane were the same as those 
of the basilar membrane. He therefore considered Reissner’s membrane, whose elastic 
stiffness is negligible compared to the basilar membrane, and the whole cochlear duct 
as not essential to the perilymph motion. BQkBsy also constructed a model containing 
Reissner’s membrane and the duct ; and, comparing this model with others which did 
not include these parts, he obtained a qualitative confirmation of his opinion (BQkBsy 
1960, p. 423). BBkBsy’s conclusion is, however, not correct: even if we assume that 
the duct moves as a whole, the substitution of the duct with only one membrane 
should not be acceptable. The substitution changes the dynamic coupling between 
the fluid motions of the scala tympani and of the scala vestibuli, drastically reducing 

t Compliance Z is the ratio between the variation of the cross-sectional area in one scala, due 
to the static elastic deformation of the basilar membrane, and the difference of pressure evenly 
distributed in both scalae which produces such a variation. 

$ BBk6sy described the endolymph as gelatinous fluid. According to more recent data (Robles, 
Rhode & Geisler 1976) i t  is not as viscous as BBk6sy thought. 
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the inertia and viscous forces resulting from the movement of the basilar membrane. 
The set of significant magnitudes of the phenomenon should have included the 
partition mass and the damping coefficient per unit of length, even if the researcher’s 
attention had been focused only on the basilar membrane and perilymph motion. 

It can easily be seen that accordance with BBkBsy ’s dimensionless coefficients will 
ensure similitude only where the elastic component in the partition response is greater 
than the inertial and viscous component; this is, however, not true in the whole 
cochlea. It may reasonably be thought that the partition mass is important in 
determining where the basilar membrane response is at its maximum (Lighthill 1981), 
but even theories which deny importance to the mass, as does Zwislocki’s one- 
dimensional theory (1953), give particular emphasis to the viscosity. A more complete 
set of dimensionlea coefficients and some understanding of their role can be obtained 
through the normalization of the motion equations. 

2.2. Analysis of the dimensionless coejicients of the normalized 
equations of the flow field in  the cochlea 

The motion in the cochlea is governed by the continuity and momentum equations 
of a divergenceless flow of a viscous liquid and by the boundary conditions of the 
flow field, one of which is represented by the dynamical equation of the cochlear 
partition. By normalizing the latter and the NavierStokes equation, a set of 
dimensionless coefficients is readily obtained. No more coefficients emerge from the 
normalization of the other boundary conditions ; Reiasner’s membrane can be 
ignored, due to its negligible stiffness and mass. The dimensionless coefficients are: 

U v 02M pwZ 
Lo’ La,’ s , s ’ 
- - -  

where L is the characteristic length of the cochlea, w and u are the radian frequency 
and the velocity amplitude of the input signal, v and p are the kinematic viscosity 
and the density of the perilymph, and S and M are the generalized stiffness and mass 
of the cochlear partition per unit of length. If a kinematic viscosity v, of the 
endolymph which is different from the kinematic viscosity of the perilymph is to be 
taken into account, the ratio v/v, must be added to the set of coefficients. The scales 
used for non-dimensionalization are as follows: length, L ;  time, l/w; velocity, u ;  
pressure, p L w .  

The generalized mass and stiffness of a strip of partition of unit length are defined 
by the relations (Lighthill 1981, p. 164): 

where q is the generalized coordinate of the basilar membrane displacement and T 
and U are the kinetic and potential energy of the cochlear partition per unit of length. 
Following Lighthill (1981, p. 199), we choose as generalized coordinate q, the 
variation in the scala tympani cross-sectional area due to the basilar membrane 
displacement z = qt;(x,) across the width 0 < xa < b of the basilar membrane. In this 
way, the bending mode [(x,) satisfies the normalizing condition : 
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and the generalized mass becomes : 

rb 

where h(x2) is the thickness of the partition structures, the density of which has been 
taken as indistinguishable from the density p of the perilymph. The stiffness S is 
essentially equal to the inverse of BBkBsy’s compliance, as long as the longitudinal 
curvature of the deformation of the basilar membrane is not very large. 

As represented by the dimensionless variables, the flow field is not altered provided 
that geometric similitude and the dimensionless coefficients are maintained. Main- 
taining the real values of the coefficients v/L2w and pw2/S in the model is equivalent 
to respecting BBkBsy’s similitude conditions, as these coefficients are two independent 
dimensionless ratios in the same five magnitudes. The first coefficient represents the 
square of the ratio of the thickness ( v / w ) i  of the viscous boundary layer, typically 
found in wave propagation, to the characteristic length of the cochlea. The second 
coefficient represents the ratio of the inertia of the liquid to the elastic reaction of the 
partition. Leaving aside the coefficient ulLw, which symbolizes the importance of the 
nonlinear terms relative to the linear terms in the liquid motion and has, in any case, 
a small influence on the membrane motion (Lesser & Berkley, 1972), and also the 
coefficient v / v ,  which is probably not very different from 1, we can say that BBkBsy’s 
conditions ensure similitude where the coefficient w2M/S is so small that it  can be 
considered of no significance. 

The radian frequency (SIM):  is the natural frequency of a partition strip having 
unit length, on the assumption that any strip may be considered independent; the 
coefficient w2M/S is the ratio of the inertia to the elastic component of the partition 
response in an oscillating motion of radian frequency w .  The partition mass does not 
change very much along the cochlear axis, while the stiffness S probably changes by 
three orders of magnitude, being higher near the stapes and decreasing rapidly from 
there ; the ratio w 2 M / S  therefore changes correspondingly. In  the cochlea, when the 
frequency of the input signal is included in the usual acoustic range (from about 0.1 
to 16 kHz), a region certainly exists near the stapes where the ratio weMIS is very 
small and the inertia component of the partition response is negligible. Such a region, 
however, extends to the whole cochlea only when frequencies are lower than 1 kHz. 
In the case of higher frequencies, although some doubts exist about the effective 
value to be assigned to (SIMP, it can reasonably be considered that this region 
progressively reduces to disappearance in the highest frequencies of the acoustic 
range. Thus, in order to have satisfactory similarity in the whole model, it seems to 
be essential to maintain the real value of w 2 M / S .  However, when BBkBsy’s conditions 
are fulfilled, this new condition is immediately satisfied if the shape of the internal 
structures of the scala media is kept, and the structures themselves are reproduced 
with a material whose density is equal, or very similar, to the density of the liquid 
around them. Nothing more than the reproduction in the model of the scala media 
is required for a closer approach to the similarity conditions. In fact, it  is: 

where the integral is a dimensionless quantity, and does not change provided that 
the geometric similitude is respected. Therefore, if pw2/S is kept constant, and if the 
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displacement mode g of the model membrane is not very different from the 
displacement mode of the real membrane, the ratio w 2 M / S  also is similar to its actual 
value. 

Also, the problem of the dependence of the stiffness S on the basilar membrane 
longitudinal curvature is worth mentioning. Lighthill (1981) noticed that the 
theoretical models able to explain the high selectivity of the membrane and its 
functioning as a high-frequency cutoff all have one common feature : the energy flow 
in the cochlea from the base to the apex stops at the point of the basilar membrane 
where the natural frequency (SIM):  coincides with the frequency w of the input signal. 
To ensure this condition, the stiffness S must depend weakly on the membrane 
longitudinal curvature. Therefore, if 

c (x , )  ei(Ut-&) 

represents the displacement wave of the basilar membrane, S should be nearly 
independent of the wavenumber k as long as possible. As  the basilar membrane is 
actually a plate rather than a true membrane, the expression for S must include terms 
in (kb/n)2  and ( k b / ~ ) ~  (Steele & Taber 1979). These terms are negligible only for 
( k b l x )  4 1 ,  if the membrane is isotropic; as k increases they eventually become 
significant. But this can be delayed if the membrane elastic modulus in the 
longitudinal direction and in the cross direction are different, the former being 
obviously smaller than the latter. In this case, the contribution of the longitudinal 
curvature to the elastic energy decreases and the membrane behaviour is similar to 
a set of independent cross oscillators. 

Anisotropy in the real membrane was suspected for a long time, due to cross 
arrangement of the fibres constituting its structure. But BBkBsy’s (1960, pp. 471472) 
experiments on static deflection seemed to deny this hypothesis. However, more 
recently Voldrich (1978), who repeated Bdkdsy’s experiments, demonstrated that the 
guinea pig membrane shows remarkable anisotropy, which rapidly disappears after 
death; this may explain the disagreement with the previous results. Both the 
experimental data and the theoretical considerations suggest that some degree of 
anisotropy is an important characteristic of the real membrane; such a characteristic 
should thus be included in a physical model of the membrane. 

Finally, in order to maintain the ratio p / w L  constant, the amplitude u / w  of the 
input signal in the model must be multiplied by the same scale factor as that which 
multiplies the real size of the cochlea. 

Although the model is greatly enlarged if compared to the real cochlea (50 times 
in the present model), the displacements to be measured remain very small, unless 
an extremely large acoustic signal is simulated. 

2.3. Geometrical similitude 
The cochlea geometry is complex and can hardly be reproduced in a physical model. 
Two aspects of its geometry may, however, be dropped without greatly altering the 
representation of the phenomenon. The first is the spiral shape of the cochlea. BBk6sy 
(1928) also neglected the curvature of the spiral scalae, which scarcely exists in some 
animals. 

This assumption is confirmed by Steele’s (1977) calculations about fluid impedance 
in a toroidal model, Viergever’s (1980, pp. 45-50) treatment of the motion equations 
in curvilinear coordinates, and Loh’s (1983) and Steele & Zais’ (1985) computations 
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of the basilar membrane response.? Also, the irregular circular shape of the cochlea 
cross-section may be represented by a rectangular shape with the same area. Actually, 
in the basal area of the model, where the wavelength is greater than the depth of 
the scalae, the motion is nearly one-dimensional and only the cross-section area is 
important. In the apical area, where the wavelength is short, the fluid motions are 
progressively confined more and more to the neighbourhood of the cochlear partition 
where they cannot be significantly influenced by the shape of the rigid boundary 
(Lighthill 1981, p. 206). 

In  conclusion, a rectilinear model, like that shown in figure 2, seems to be accept- 
able. In such a model, the ratio between the areas of the two scalae is equal to the 
effective ratio in the basal area and the basilar membrane width changes along the 
axis in the model, as in the real cochlea. 

3. Description of the model 
The model (figure 2) consists of three channels separated by two membranes. The 

scala tympani and scala vestibuli communicate at  one end through a small passageway 
which simulates the helicotrema. The upper membrane, simulating Reissner’s 
membrane, consists of a transparent nylon film 0.1 mm thick; this is flaccid and its 
only function is to separate the fluid in the scala media from the fluid in the scala 
tympani and in the scala vestibuli. The lower partition is a composite structure which 
can be seen in figure 3, where the model cross-section is represented. It consists of 
a 1 mm thick rubber latex membrane with a 1.8 N/mmz elastic modulus, a rubber 
rib (with a 4 x 4 mm square section) which has a 1.7 N/mm2 elastic modulus, and 
some silicone wax. 

The membrane was stretched crosswise in order to simulate the anisotropy in the 
elastic stiffness of the real basilar membrane, the importance of which has already 
been mentioned. The maximum intensity of the transversal stress was near the stapes; 
from there it started to decrease until i t  disappeared in the apical area. The membrane 
was closed in a brass frame fastened to the Plexiglas structure of the model. The 
frame is shaped in order to reproduce the basilar membrane variable width. The 
operation of closing the membrane in its frame changes the initial stress of the rubber 
and forces the material flow back towards the inside; the strength of the fastening 
bolts of the frame was therefore adjusted empirically until a smooth variation of the 
membrane compliance was obtained. 

A square-section prism was attached to the membrane; this was provided with 
V-shaped cuts every 4-5 mm, so that it behaved, from the point of view of the elastic 
stiffness, as an independent sequence of elements. Finally, the whole was shaped with 
silicone wax until a rough reproduction of the organ of Corti was obtained. A soft 
rubber structure, simulating the tectorial membrane and made of elements 5 cm long, 

t A different opinion about this subject was expressed by Huxley (1969) who estimated that 
the combination of longitudinal stiffness of the partition and spiral shape of the cochlea could cause 
a sharply tuned oscillation of the basilar membrane. Lieberstein (1971,1972) also considered coiling 
an essential feature of the cochlea. According to this author, curvatures of arc segments of the 
cochlea helical spiral and the corresponding span of the basilar membrane across the cochlea appear 
to be principally responsible for frequency discrimination. Lieberstein, however, disregarded the 
fluid motion and proposed a uniformly loaded plate, clamped on two lateral edges and on both ends, 
as a model of the basilar membrane. The authors who properly approached the matter as a 
fluid-mechanical problem with the dynamical behaviour of the basilar membrane as a boundary 
condition found that the response of the basilar membrane in cochlear models is not significantly 
affected by coiling. 
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A 
~~ ~ 

FIGURE 3. Model ( A )  and cochlea ( B )  cross-section. 

was placed over the Corti organ. The tectorial membrane does not lean on the organ 
of Corti directly: it is separated from it by the heads of some pins nailed to the upper 
wall of the organ of Corti; the resultant meatus in static conditions is rather high: 
approximately 0.5-1 mm. The influence of the tectorial membrane on the partition 
stiffness was checked and found to be negligible'; it modified only slightly the 
compliance measurement in static conditions. The inner duct placed on the left-hand 
side of the Corti organ simulates the sulcus; it  is bounded by the organ of Corti, the 
tectorial membrane and a stiff, transparent Plexiglas wall. The density of these 
structures is nearly 1 g/cm3 ; the mass per unit of length of the basilar membrane and 
of the organ of Corti is estimated to be approximately 0.7-1.4 g/cm ; the mass of the 
moving part of the tectorial membrane is about I g/cm. 

Some liquid displacement sensors, designed for the purpose, are located within the 
scala media ; they consist of two strain gauges glued together back to back ; their wires, 
placed on the external surfaces, provide the necessary bending stiffness. Amplitude, 
phase and direction response of each sensor was calibrated; the sensors essentially 
measure the component of the displacement normal to their surface, while the parallel 
component is nearly unperceived. The residual signal, with the sensor placed parallel 
to the displacement direction, generally does not exceed 5 yo of the maximum signal. 
A set of 30 sensors was located near the organ of Corti, just in front of the meatus 
between this organ and the tectorial membrane, in order to measure the cross 
displacements in the liquid. Another set of sensors, rotated through a right angle, 
was placed in the middle of the scala media to measure the longitudinal component 
of the displacements. 

The three channels were filled with silicone oil and the input signal was generated 
by a vibrator connected to the oval window; the wave form of the input signal was 
measured by a transducer of displacement. 
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4 C, C(mm4/N, 
r (cm) b (cm) (t lo2) ( -  10%) - 10%) 

10 1.13 0.96 1.53 1.24 
20 1.30 2.76 3.86 3.31 
30 1.57 5.33 8.67 7.00 
40 1.70 9.62 14.40 12.00 
50 1.70 9.62 13.47 11.50 
60 1.76 13.40 19.60 16.40 
70 1.95 24.80 34.80 29.80 
80 2.19 42.80 53.95 48.40 
90 2.30 82.10 101.60 91.80 

100 2.42 90.50 106.90 98.70 
110 2.40 138.60 138.60 138.60 
120 2.41 229.20 229.20 229.20 
130 2.52 265.20 265.40 265.20 
140 2.65 288.10 288.10 288.10 
150 2.72 285.00 285.00 285.00 
170 

TABLE 1 

- - - - 

4. Experimental conditions 
Several tests were carried out in different conditions. However, most results, shown 

in the present paper, refer to a standard condition with the configuration of the scala 
media as described in the previous section; other test conditions will be specified when 
necessary. In the standard configuration, the three ducts were filled with silicone oil 
of density approximately 1 g/cm3 and kinematic viscosity 130 mm2/s. The membrane 
compliance was determined at the beginning and at the end of the tests by measuring 
the maximum displacement of the membrane subjected to a constant pressure 
difference, and by assuming that the shape of the membrane deformation in the 
cross-section was parabolic. Due to relaxation of the initial tension, there was a 50 yo 
difference in the compliance at the beginning and the end of the tests, at least in the 
area near the cochlear windows. The initial value Ci and the final value C, of the 
compliance, as well as the average value C, are shown in table 1 ; in the following 
description we will refer to the average value C. Table 1 also shows the width b of 
the basilar membrane. This is, apart from assembling imperfections, the width 
suggested by Peterson & Bogert (1950) multiplied by the lengthscaling factor 50. 

The membrane displacements were deduced by the displacement of the organ of 
Corti, which was measured with a microscope through stroboscopic lighting. The 
displacement of the liquid was measured either by strain-gauge sensors or through 
stroboscopic observations of suspended aluminium particles ; the phase variation was 
measured by comparing the input signal to the signal of the transducers of 
displacements of the liquid. The minimum displacements measurable optically or 
through strain-gauge transducers were of the order of mm. By comparing 
different measurements, the maximum error in the microscope readings was estimated 
to be approximately 25% at low amplitudes and a few units percent at high 
amplitudes. The response amplitude of the strain-gauge sensors strongly depends on 
how accurately they are placed. A divergence of up to 20-40 % from the calibration 
curves was estimated for the strain-gauge transducers; as a consequence, the 
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response curve measured at a fixed frequency is not very precise. On the other hand 
the phase measurements are more precise: possible errors may only be caused by 
errors in the reading of the distance between the maximum values of two signals on 
the oscilloscope display ; in fact the phase measurement is not particularly sensitive 
to slight errors in the location of the sensors. Absolute error may be estimated to be 
of the order of 0.2 rad. 

5. Frequency-, viscosity- and amplitude-scaling ratios 
The frequency of the input signal in the model ranged from 20 to 400 Hz; the 

corresponding cochlea frequency is (Cmod/Ccochlea)~ times greater, as can be deduced 
by the similarity condition 

pw2C = const, 

since the difference between the perilymph density in the model and in the real cochlea 
was negligible. However, the frequency scaling ratio remains somewhat uncertain due 
to the uncertain values to be assigned to the real basilar membrane compliance. 
BBkBsy (1960, p. 476) directly measured the volume displacement per unit length of 
the cochlea duct by applying a uniform difference of pressure between the peripheral 
scales. 

Later, however, BQkBsy’s data were questioned for several reasons : his experimental 
method was considered unreliable and the data appeared plainly unsatisfactory for 
any theory of spatial discrimination of frequency based on resonance (Viergever 1980, 
p. 114; Lighthill 1981, p. 161). In  fact, according to BBk6sy’s measurements, the 
basilar membrane compliance varied by just two orders of magnitude between the 
base and the apex. Thus, since the partition mass is almost constant, the characteristic 
frequency of the partition ought to vary by about a factor of ten along the cochlea 
length, i.e. much less than the acoustic frequency. The basilar membrane compliance 
may also be indirectly deduced from the other data of BBk6sy with some interpolation. 
He measured the basilar membrane static deflection in ‘three different points under 
concentrated loads (BBkBsy 1960; pp. 467,468) and Peterson t Bogart (1950) relied 
on these measurements to obtain a law of compliance variation which markedly 
disagrees with BQkBsy ’s direct measurements. The compliance estimated by Peterson 
& Bogert has a variation of three orders of magnitude and its value in the basal area 
is approximately 50 times smaller than BBkBsy’s value. 

Both the curve of BQkBsy’s direct measurements and the curve estimated by 
Peterson & Bogert are shown in figure 4, where the compliance values of the model 
are shown as well, although in a different scale. The ratios of the model compliance 
to the Peterson & Bogert estimated compliance is approximately lo4, roughly 
constant from the base up to 0.8 of the model length. According to this ratio, the 
frequencies of the model should be multiplied by a factor of lo2, when referred to 
the real cochlea. In  this way, however, the operating field of the model, as a spatial 
selector of frequency (from 25 to about 300 Hz, see figure 8 )  would correspond to real 
frequencies ranging from 2.5 to 30 kHz, which are higher limits than those of the 
acoustic field. Peterson & Bogert’s estimated values of the compliance may be too 
small; actually, the phase velocity data for low-frequency waves seems to suggest 
this conclusion. The phase velocity of a wave in any position along the cochlea length, 
where the characteristic frequency is much higher than the wave frequency, is 
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basilar membrane (right-side axis). 

where A is the area of the cross-section of a scala. Peterson & Bogert's compliance 
data provided phase velocities ranging from 350 m/s at  the base to approximately 
5 m/s at the apex ; Zwislocki (1953) showed that these velocities, at least in the apical 
area, are two or three times greater than the velocities which could be obtained from 
the propagation times measured in the cochlea by BBkBsy (1949); one can hardly 
believe that these measures too were completely wrong. 

Lighthill as well, who severely criticized BBkBsy 's compliance measurements for 
the case of a wider compliance range, estimated the phase velocity in the basal area 
to be approximately 100m/s (Lighthill 1981, p. 150). If this value is taken as a 
reference, the model frequencies correspond to approximately 50 times greater than 
the real frequencies, and the discrimination field of the model corresponds to the 
normal acoustic field. We therefore adopted 50 as the most probable scaling ratio of 
frequencies and in the description of our experimental results we shall refer to it. In  
this case from the similarity condition: 

V -- L2w - const, 

it can easily be inferred that the kinematic viscosity of the liquid in the model has 
to be 50 times greater than the perilymph viscosity, as the linear dimensions have 
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been enlarged 50 times. The perilymph viscosity was approximately 2mm2/s in 
BBkBsy's measurements; viscosity of the silicone liquid in the model was 130 mmz/s 
in the described test conditions, thus being in reasonable agreement. Yet it must be 
remembered that a perilymph viscosity three times smaller than the value measured 
by BBk6sy was found in more recent measurements (Rauch 1964, p. 454). This 
fact - combined with the possibility that what we considered to be the most probable 
scaling ratio of frequency may have been halved - implies that the model might have 
been damped too much. Many interesting features of our results, however, proved 
independent of the model damping. 

I1  
Finally, the condition: 

w _ -  wL - const, 

requires the ratio of the input signal amplitude u / w  to the characteristic dimension 
L of the cochlea to be kept constant. The condition is useful in evaluating what the 
amplitude of the input signal has to be in the model if it is to produce hydrodynamical 
nonlinear effects equivalent to those in the real cochlea. The biggest displacements 
of the basilar membrane response, reported by BBkBsy, are of the order cm, and 
these were obtained through an acoustic signal of 140 dB, i.e. 0.0002 dyn/cm2; the 
corresponding displacement in the model is of order 10-l cm, since the length-scaling 
ratio is 50. Thus, in order to pick up the distribution of basilar membrane 
displacements caused in the model by a signal corresponding to a 140 dB real one, 
it was necessary to measure displacement amplitudes in the range from lo-' cm to 
a minimum of about cm. This was in fact the range of our measuring capability; 
the amplitude of the signals we simulated in the model were therefore rather large, 
around the threshold of pain, or just a little beneath that. 

6. Experimental results 
6.1. Oscillatory motion in the scala media 

The pattern of the motion in the scala media of our model is rather complicated. The 
Corti motion, which we observed by microscope, is a three-dimensional vibration with 
a minor component in the direction of the model axis. The main component is normal 
to the basilar membrane plane; a cross component with a smaller amplitude was 
present as well. The tectorial membrane moved with the Corti organ in most places, 
but, where the gap between the Corti organ and the tectorial membrane was wider, 
the tectorial membrane oscillated with a slightly smaller amplitude than the Corti 
organ, although still with nearly the same phase. 

The movements of the liquid within the layer between the Corti organ and the 
tectorial membrane were not visible in our standard case. In  a different set of 
experiments, the tectorial membrane was rigid, motionless and diaphanous, with a 
gap between it and the organ of Corti about 1 mm wide at rest; in this case the liquid 
motion was made visible by means of aluminium powder dispersed in the liquid. The 
oscillation of the powder within the layer was essentially in the cross direction, and 
its amplitude was about ten times greater than any other visible oscillation. In both 
cases, the response of the cross sensors, which were placed at the exit of the meatus 
between the tectorial membrane and the organ of Corti, revealed a displacement 
towards the outside of the sulcus when the normal component of the Corti displacement 
was towards the inside of the scala media. The response of the sensor was proportional 
to the normal component of the Corti displacement, and had the same phase. In  
figure 5, which refers to the case of the elastic tectorial membrane, the normal 
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FIQURE 5. Comparison between the basilar membrane response and the cross displacement 
transducers’ response at fixed points (the amplitudes are in both cases normalized to their maximum 
value). 

displacements of the Corti organ and the response of a cross sensor placed in the same 
point on the model axis are shown as a function of frequency, with their maximum 
amplitude normalized to 1 ; the two sets of points agree quite well. The responses of 
the same sensors in the case of the rigid tectorial membrane displayed the same 
pattern, and their absolute values are about 30 % bigger than those obtained with 
the elastic tectorial membrane, all the other conditions being the same. The few 
longitudinal sensors did not show anything surprising ; the amplitudes of the 
displacements they picked up were of the same magnitude as the normal displace- 
ments of the Corti organ in the vicinity of the place of the maximum response of the 
partition, while in the basal section of the model they were greater than the normal 
displacements of the Corti organ. 

6.2. Amplitudes of basilar membrane displacements; phase lag of the cross semor 
signals ; spatial distribution of amplitude maximum along the axis of the model, 
as a function of frequency 

In figure 6, normal displacements of the Corti organ, corresponding to four different 
frequencies, are plotted. The displacements were read through a microscope, by 
means of stroboscopic lighting. We consider the normal displacements of the Corti 
organ as representing the volume displacements of the basilar membrane. For the 
same frequencies, the phase lag q5 of the cross sensor is shown in figure 7 ; the phase 
lag is related to the pulsator displacement, which is taken as positive when directed 
outwards from the model. In close proximity to the oval window the phase of the 
sensor response is about $t in advance of the pulsator displacement. This indirectly 
confirms the agreement that we assumed between the phase of the normal displacement 
of the Corti organ and that of strain-gauge sensor response, and the tight connection 
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between the Corti normal displacement and the volume displacement of the basilar 
membrane. Actually, the volume displacement of the basilar membrane has to be in 
advance of the oval window displacement in the basal section of the model, where 
the elastic component of the bctsilar membrane impedance dominates the viscous and 
inertial components. 

FIGURE 7. Phase between the input signal and the response of the 
cross displacement transducers versus distance. 
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distribution of the characteristic frequency of the model basilar membrane, estimated through the 
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The wavenumber k, where k = -a$/ax,, increases regularly from the’base to a point 
just after the maximum response of the basilar membrane; the curve flexes at  this 
point and the wavenumber rapidly decreases. This inversion in the trend of k is due 
to the mean-pressure wave, the fast wave mentioned by Lighthill (1981, pp. 173-181); 
the importance of this wave, relative to the pressure-difference wave associated with 
the membrane displacement, was higher in our model than in the real cochlea, 
probably due to the large distensibility of the model cross-section. The sensors began 
to measure the influence of the fast wave and the apparent phase velocity began to 
increase when the membrane displacement reduced by one order of magnitude with 
respect to its maximum value. 

As regards the curves of amplitudes of the basilar membrane displacement, their 
maximum values move as a function of the frequency in qualitative agreement with 
a resonance theory. Figure 8 shows the position of the maximum response against 
frequency, as well as the positions where the displacement, compared with the 
corresponding maximum value, reduces by 20 dB. The positions indicated in the 
figure represent the averaged values obtained during several measurements ; the 
spread in these measurements was maintained within 5 % in the case of the maximum 
values (excluding one case) and within 15 % in the case of the points at - 20 dB below 
the maximum. Both series of points are distributed along the model length in a similar 
manner, to a series deduced from a hypothesized characteristic frequency : 

1 
2 R  

f, = - (ZM)-k 

Values off, are shown in figure 8; they were calculated by assuming M = ph*/b, where 
h* is the distance between the basilar membrane and Reissner’s membrane and b is 
the membrane width; the calculated points lie between the two series of points 
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experimentally measured and follow the two distributions with good agreement. The 
generalized mass ph*/b is equal to the mass which would exist if the bmilar membrane 
moved upwards with a displacement uniform in the cross direction, moving stiffly 
with itself a layer of height h* (6 = l / b ;  h = h*; $2.2). Such an estimate of M seems 
to be high, but still reasonable if the large mass of the tectorial membrane and of 
the liquid within the sulcus is considered. 

However, another series of results, obtained with a different configuration of the 
scala media, raises some doubts about the assumption that the maximum position 
is determined by resonance. During these tests the elastic tectorial membrane was 
replaced by a rigid tectorial membrane, fixed to the wall and separated by the surface 
of the organ of Corti. The thickness of the layer between the (moving) surface of the 
organ of Corti and the motionless surface of the tectorial membrane ranged from 1.4 
to 0.3 mm in static conditions, with strong irregularities. In  such a configuration, a 
shift in the position of the membrane displacement maxima towards the apical area 
could reasonably have been expected, since the tectorial membrane mass was no 
longer participating in the basilar membrane motion. The experimental results, 
however, did not show anything of this kind: for some frequencies, the new points 
of the membrane response nearly coincide with the interpolation curves of the old 
points (figure 9); for other frequencies, the agreement is not so good, but the 
differences do not turn out to have any systematic character. At the extremes of the 
frequency range, there are negligible differences in the position of the basilar 
membrane displacement maxima, whichever case is taken. 

This was a surprising result. It is difficult to believe that the mass of the basilar 
membrane and the organ of Corti can simulate by itself the high generalized mass 
ph*/b suggested by the comparison showed in figure 8. In  fact, in order to have 
M - ph*/b,  the displacement mode [ ( x l )  would have to satisfy the following 
condition : 
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Reissner's membrane . 
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FIQURE 10. Scala media cross-section. 

with 7 = x2/b, where the ratio h/h* ranges from 0.2 to 0.07. This seems rather 
unlikely. 

The more obvious explanation is that the partition mass is not important in 
determining the basilar membrane response, which corresponds to the calculations 
of Steele & Taber (1979). It has, however, to be noticed that the inertia of the fluid 
in the meatus between the organ of Corti and the tectorial membrane may have 
simulated a big partition mass. By observing the aluminium particles suspended in 
the fluid between the two organs, oscillations were discovered, with their cross 
component greater than any other visible movement. The fact that the displacements 
measured by the cross sensors were proportional to the vertical displacement of the 
organ of Corti suggests that a constant percentage x of volume displacement per unit 
length of the basilar membrane flowed back and forth crosswise through the meatus, 
independently of the wavenumber k, at least in the range of the displacement values 
we could measure. The effect of inertia caused by this motion can be evaluated 
roughly by assuming a pressure p, within the sulcus different from the pressure pd 
in the scala media (figure 10). The motion equation of a cross element of the membrane 
can then be written in the form: 

where b' is the length of the section of the membrane width under the pressure p,. 
If x aq/at is the volume flow through the meatus, whose height is h,, between the organ 
of Corti and the tectorial membrane, we can write: 

where 1 is the transversal meatus length. Consequently, the integral 

becomes approximately 
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determining a generalized mass of about 

Since the coefficient x is also near to 

the ratio between this additional mass and the mass of the basilar membrane and 
the organ of Corti is therefore, (see §2.2), 

which should not be neglected, as the ratio l/h2 in the model was of the order of ten. 

6.3. Displacement amplitude of the basilar membrane as a function of frequency; 
dispersion curves; data obtained with air in the scula vestibuli 

The data described in this paragraph were obtained at a fixed point of observation 
by varying the frequency of the input signal. Figure 11 displays in logarithmic scale 
the amplitude of the vertical component of the displacement of the organ of Corti, 
as a function of frequency, in three different positions along the cochlear axis. The 
maximum positive slope of the response curves is 1W12 dB per octave before reaching 
the maximum, while negative slope is from -40 to -60 dB per octave. Both slopes 
are, in their absolute value, smaller than the slopes obtained during in vivo 
experiments on the cochlea ; in particular, the negative slope of the high-frequency 
side of the curve, is plainly insufficient, if compared with the - 100 to -300 dB per 
octave obtained in the in vivo experiments (see Viergever 1980, pp. 15-27). 

I3 PLY 153 
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FIGURE 12. Dispersion curves in the standard case: 0 0 0, position along the longitudinal axis 
x / L  = 0.1, ratio of the BM width to scala tympani height b / H  = 0.25; A A A, x / L  = 0.15; 
b / H  = 0.29; a, x / L  = 0.35, b / H  = 0.35; + + +, x / L  = 0.41, b / H  = 0.39. 

Some explanation of this inadequacy of the model is provided by analysis of the 
energy flow in the model through the dispersion curves (Lighthill 1981, p. 156), where 
the wavenumber k is plotted as a function of frequency. Some of these curves are 
shown in figure 12. The k values were deduced from the phase measurements of cross 
sensors located at distances from 3-5 cm apart; the measuremeiits were carried out 
at fixed positions to prevent errors of multiples of 2n. In figure 12, the experimental 
points initially line up along a straight line where the phase velocity w/k and the 
energy propagation velocity (group velocity dwldk) coincide ; this stretch of the curve, 
which extends from the origin of the axes to the point where k H  N 0.5, corresponds 
to essentially one-dimensional motion (Lighthill 1981, p. 204), in good agreement with 
the theoretical predictions. 

The values of the phase velocities as a function of the position along the model 
axis are shown in figure 13. The experimental values of the phase velocity agree well 
enough with the formula w/k = (A/2pZ):, where A is the cross-sectional area of one 
scala. However, a better fit with the experimental values is obtained with the function 
c(bH/pZ)i ,  where b is the membrane width, H is the height of the scala and c is a 
suitable numerical coefficient. This latter function is shown in figure 13 with the 
coefficient c chosen in such a way that the experimental and the calculated result 
coincide for x / L  = 0.18. 

Coming back to examine the dispersion curves, we notice a bend after the first tract, 
where the ratio between the group velocity and the phase velocity decreases until 
it  reaches minimum values of about 4. It is worth mentioning that the basilar 
membrane response maxima are in the first part of the second tract. The trend of 
the curve is still consistent with the theoretical predictions and the great degree of 
dispersion displayed in this tract is in agreement with the results of Steele & Taber 
(1979) about the fluid generalized mass in three-dimensional models ; the ratios in the 
region around kH = 2, for the ratio b / H  ranging between 0.25 and 0.35, are near to 
the values indicated by Lighthill (1981, p. 211). Yet, as kH increases, the experimental 
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points display a trend which differs from the predictions of the critical layer absorption 
theory (Lighthill 1981, p. 156). According to this theory, the dispersion curves should 
tend to a horizontal asymptote depending on the point along the axis, and the energy 
flow should halt when the signal frequency approaches the membrane critical 
frequency (1/2n) ( l /L 'Mp at that point. Our experimental points show a different 

13-2 
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trend; in our standard case, at high frequency values, the wavenumber started 
decreasing again instead of increasing unlimitedly (figure 12). This apparent behaviour 
may be attributed to the interference of the main pressure fast wave on the transducer 
measurements; but, even in those tests where the fluid motion was driven through 
the scala tympani, and where the scala vestibuli was only partially filled with liquid 
in order to eliminate the fast wave, the points of the dispersion curves did not tend 
to a horizontal asymptote (figure 4). The energy propagation velocity remained fairly 
constant for all circumstances in which measurements could be carried out. 
Incidentally, we note that the curves of the basilar membrane response versus 
frequency in the above-mentioned case of the scala vestibuli only partially filled with 
liquid (e.g. with a free surface), had the same shape as those of the standard case 
(figure 15). According to the theory, if the group velocity is to tend to zero as kH 
increases, there must be a range of values of kH where two different conditions are 
both fulfilled : 

(i) the generalized mass of the fluid involved in the oscillatory motion has become 
negligible if compared to the partition mass; 

(ii) the generalized stiffness S is still essentially independent of the wavenumber k. 
This simultaneity of conditions may fail either because the partition mass is too 

small, or because S is dependent on still rather small values of kH. We can hardly 
believe that the mass M of the model partition was much smaller than the cochlear 
mass, at least in our standard configuration, even considering the unknown element 
represented by the actual displacement mode of the basilar membrane. We therefore 
assume that the elastic anisotropy in the basilar membrane of the model was not 
sufficient, notwithstanding the initial transversal tension given to it ; very probably, 
as kH increased, the membrane longitudinal stiffness began to act before the fluid 
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FIQURE 16. Basilar membrane response with different viscosities of the endolymphatic liquid (the 
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mass became negligible. This would also explain the low influence of the tectorial 
membrane mass on the partition response. 

6.4. Injluence of endolymph viscosity on the basihr membrane response 
Some tests were conducted where the liquid viscosity in the scala media was 10 times 
greater than the liquid viscosity in the scala tympani and scala vestibuli. The results 
can be summarized as follows : 

(i) Distribution along the model length of the basilar membrane displacement 
maxima, as a function of frequency, was not subjected to any measurable shift; 

(ii) The curves of the basilar membrane displacements at fixed points, as a function 
of frequency, displayed a lower maximum than those obtained with a lesser viscosity ; 
the slope of the curves in the high-frequency side was, however, unchanged (figure 16). 

6.5. Nonlinear effects 
The only nonlinear effect we noticed was the one already described by Helle (19743, 
p. 77):  a continuous motion of fluid in the scala media, whose main feature was a 
strong outflow from the sulcus, concentrated in the area of maximum response of the 
basilar membrane. The axial component El of this continuous motion was measured 
approximately in the middle of the sulcus, and the cross component U2 of the motion 
in the layer between the organ of Corti and the tectorial membrane was estimated 
by means of the relationship: 
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where A, is the sulcus cross-section area and h, is the height of the layer. AJh, was 
assumed constant and equal to 400 mm. The results obtained varied rather irregularly 
as the position of the maximum of the basilar membrane displacement shifted along 
the model length, but they were all approximately similar to the curves shown in 
figure 17, which refer to a 150 Hz model signal. 

Their common features may be summarized as follows. 
(i) In the area of the amplitude maximum of the basilar membrane response, there 

is a cross flow coming out of the sulcus, which is more sharply concentrated than the 
basilar membrane response, as pointed out by Helle. 

(ii) The continuous motion does not appear to be more concentrated than the 
oscillating motion, if the whole scale of the resultant eddies is considered and not only 
the cross component coming out of the sulcus. 

(iii) When the frequency changes, the place of the maximum outflow shifts 
irregularly with respect to the place of the maximum response of the basilar 
membrane, even though it always remains in its vicinity. The shift is probably due 
to the unevenness of the height h, of the layer between the tectorial membrane and 
the Corti organ. In our standard case, however, the place of maximum outflow was 
near to the maximum of the basilar membrane response, or shifted a bit towards the 
base, as in figure 17. 

(iv) The structure of the continuous motion depends on the whole axial distribution 
of h, and not only on the value of h, in the area of the maximum response of the 
basilar membrane. In a set of experiments, a large opening unintentionally left 
between the sulcus and the scala media at the basal end of the model, changed the 
whole structure of the motion. 

(v) The distribution of the cross velocities depends almost certainly on the 
mechanical characteristics of the tectorial membrane. A set of experiments was 
carried out in a model configuration with a rigid tectorial membrane separated from 
the Corti organ by a gap; the gap height was carefully checked to be uniform along 
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the length of the model, and approximately equal to 1 mm. An example of the 
relevant outflow from the sulcus is plotted in figure 18, for the frequency of 65 Hz; 
in this case AJh, waa 200 mm. These results are not strictly comparable to the former 
ones, because in this set not only the stiffness of the tectorial membrane but even 
the compliance of the basilar membrane was different from that of the standard case ; 
the distribution of the brtsilar membrane displacements therefore changed. Anyway, 
these results display very regularly some differences in comparison to the standard 
case: the velocities are greater than those in the standard case, the position of the 
maximum outflow is shifted towards the apex, and the place of the maximum 
response of the baailar membrane strictly coincides with the place where the cross 
flow reverses its direction. 

It is difficult to know whether such a continuous flow increases the spatial 
discrimination of frequencies, as assumed by Helle and discussed by Steele (1973). 
The continuous motion is sustained by a sort of Reynolds stress pug uj, produced by 
the oscillating motion (Lighthill 1978, pp. 325-351), and its spatial distribution 
suggests that the resultant of these stresses, most probably the cross component 
- p ( a / a z , ) ( G ) ,  is particularly intense, and rapidly changing in the area of the 
membrane maximum displacement. It can reasonably be assumed that the phenom- 
enon might have been even more marked, if an excessive longitudinal stiffness of the 
partition had not prevented any further increase of the wavenumber k.t On the other 

t This is because a general property of waves in fluids (when they are not affected by external 
forces) equates the Reynolds stress (or momentum flux) to a wavenumber component multiplied 
by the ratio of energy flux to frequency (see, for example, Lighthill 1978, p. 330). This suggests 
that an enormous build-up of momentum flux in the oscillatory motion may occur at a point where 
the wavenumber increaaes to high values while the flow of energy becomes concentrated very close 
to the basilar membrane. Between that point and the adjacent region where energy flux is rapidly 
dissipated, and so the momentum flux falls steeply to zero, powerful forces must act to generate 
a mean motion. 
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hand, the velocity values of this continuous motion are extremely low; the ratio 
between the continuous motion maximum velocity and the oscillating motion 
maximum velocity was in our standard case in the order of at  the level of the 
model signals. This level corresponds to an acoustic signal of approximately 140 dB. 
As could easily be checked, the amplitude of the continuous motion decreases with 
the square of the amplitude of the input signal : this ratio must therefore be extremely 
small when acoustic signals have reduced intensity; for instance, approximately 
at  80 dB. 

just because of its continuous character, it might have an inhibiting effect. 
We do not know whether this slow flow may excite the hair cells; it is possible that, 

7. Conclusions 
We conclude by summarizing the main features of our experimental results. The 

motion in the scala media of our three-duct model was complex. The Corti organ 
displayed a three-dimensional vibration with the main component normal to the 
basilar membrane plane, and the elastic tectorial membrane moving with essentially 
the same amplitude and the same phase as the Corti organ. The fluid motion had a 
large cross component in the layer between the Corti organ and the tectorial 
membrane; the signals of the transducers, which picked up the cross component of 
the fluid displacement just at the exit of the layer, were proportional to the normal 
displacement of the Corti organ, and had the same phase. This picture suggests that 
an approximately constant proportion of the volume displacement of the basilar 
membrane flowed through the gap between the Corti organ and the tectorial 
membrane, independently of the wavenumber at least within our measuring range. 
When the tectorial membrane was rigid and still, the amplitude of the cross 
movement of liquid increased by about 30 yo. In qualitative terms, the response of 
the model basilar membrane which we assumed as represented by the normal 
displacement of Corti, was similar to the real basilar membrane response. Depending 
on frequency, the place of the maximum response shifted along the axis of the model, 
getting nearer to the base when the frequency was higher. Spatially, the model was 
able to discriminate frequencies in the range of about 25-350 Hz. If we assume a 
frequency scale factor of 50, which we believe to be the most reasonable, this range 
corresponds rather well to the physiological one. The position of the amplitude 
maximum of the basilar membrane response proved independent of endolymph 
viscosity, and, most probably, it was independent of the partition mass too; only 
compliance appeared to affect it. 

When curves of basilar membrane response at a fixed point a8 a function of 
frequency were plotted, they displayed a remarkable degree of asymmetry ; the curves 
fell sharply as the frequency increased beyond some critical value, while their rise 
in the low-frequency side was by far more gradual, and was also in qualitative 
agreement with the real cochlea. In quantitative terms, however, slopes on both 
low-frequency and high-frequency sides were smaller in their absolute values than 
the actual ones; in particular, the high-frequency side had a negative value of 
40-60 dB per octave instead of the 100-300 dB per octave measured in vivo in the 
real cochlea. Since viscosity turned out to affect the peak of the basilar membrane 
response, the minor defect of the positive slope can be ascribed to some excess of 
damping; on the other hand the negative slope of the curve was largely unaffected by 
the viscosity of the endolymphatic liquid. 

An understanding of the high-frequency slope defect can be achieved by observing 
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the dispersion curves, which we deduced from the phase measurements of the cross 
sensors in scala media. As Lighthill (1981, p. 156) pointed out, the velocity of energy 
propagation can be analysed by means of these curves. Our curves conform to 
theoretical predictions for relatively small values of the number kH; they describe 
rather well the predicted slowing down of the energy flow, which occurs in passing 
from the long-wave to the short-wave condition, and the influence of the three- 
dimensional character of the motion on the group velocity at kH around 2 (Steele 
& Taber 1978; Lighthill 1981, p. 211). For kH greater than 2, however, the group 
velocity remains almost constant in our curves, and the final stage predicted by 
theory, in which the energy propagation should come to a halt, is missing. This can 
hardly be attributed to a lack of partition inertia; most likely, any further slowing 
down of the velocity of the energy propagation was prevented by the longitudinal 
bending stiffness of the partition. According to the theory of the critical layer 
absorption (Lighthill 1981, p. 158), both generalized stiffness and mass of the whole 
system must be independent of the wavenumber k if the energy propagation is to 
be halted. The generalized stiffness is independent of k for small values of the latter, 
and becomes more and more dependent as k increases, due to the longitudinal 
stiffness. The inertia of the whole system, in contrast, varies with k as long as its value 
is small, and tends to become constant as k increases, as the fluid inertia becomes 
negligible in comparison with the partition inertia. Both a large mass of the partition 
and a high degree of anisotropy, with the transversal stiffness dominant over the 
longitudinal one, favour the simultaneity of the two independence conditions 
required by the theory. In our model, however, the mass of the basilar membrane, 
of the Corti organ and of the tectorial membrane must be considered rather large, 
even allowing for the unknown factor of the displacement mode of the basilar 
membrane. The fact that there was no halt in the energy flow may be reasonably 
ascribed to an insufficient degree of stiffness anisotropy, which we tried to simulate 
through the transversal tension applied to the model basilar membrane. This 
conclusion is consistent with the fact that the mass of the tectorial membrane had 
hardly any influence on the basilar membrane response of our model. 

It is worth noting a posteriori that all our results emphasize the importance of the 
basilar membrane stiffness; all the other physical magnitudes appear to play a minor 
role. 

In regard to the nonlinear aspects of the fluid motion, we found a continuous flow 
similar to that described by Helle in 1974. The outstanding feature of this motion 
is a cross flow, coming out from the sulcus in the area of maximum response of the 
basilar membrane. The pattern of the continuous flow varied rather irregularly with 
frequency ; i t  proved to be dependent on the shape of the whole gap between the Corti 
organ and the tectorial membrane, and on the stiffness of the tectorial membrane. 
The cross flow, however, was always more sharply concentrated than the basilar 
membrane response and in many cases it displayed an impressive peak. The 
amplitude of the velocities of the continuous motion increase with the square of the 
amplitude of the input signal, as expected; yet they are very much smaller than the 
oscillatory motion amplitudes, even when the input signal in the model is very large, 
corresponding to an acoustic signal in the neighbourhood of the threshold of pain. 
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